Page 58 - 《橡塑技术与装备》2024年4期
P. 58

橡塑技术与装备                                          CHINA RUBBER/PLASTICS  TECHNOLOGY  AND EQUIPMENT

                 Mater, 2019, 29(17):190–202.                      dimensional  titanium carbide  “clay” with  high volumetric
             [24]  L. Zhang, X.Q. Ji, X. Ren. Electrochemical ammonia   capacitance[J]. Nature, 2014, 56,(24):78–81.
                                                               [26]  J. Halim, M.R. Lukatskaya, K.M. Cook.  Transparent
                 synthesis via nitrogen reduction reaction on a MoS 2
                 catalyst:Theoretical and experimental studies[J].  Adv.   conductive two-dimensional titanium carbide epitaxial thin
                 Mater, 2018, 30(17):172–181.                      films[J]. Chem. Mater, 2014, 26(14):2 374–2 381.
             [25]  M. Ghidiu, M.R. Lukatskaya, M.Q. Zhao. Conductive two-



               Research progress and prospects of two-dimensional nano catalysts


                                             Zhang Wei, Wang Chao, Kang Yong
                            (Jiangsu Lee & Man Chemical Co. LTD., Changshu 215500, Jiangsu, China)

                 Abstract: This article introduces typical two-dimensional nanocatalysts that have long been considered
             a research hotspot in general catalytic applications, and discusses their classification, structure, synthesis
             methods, and characterization in sequence. In addition, we have provided discussions on catalytic
             applications based on two-dimensional nanomaterials, mainly focusing on environmental treatment and
             biochemical technologies, including dye degradation, toxic substance elimination, hydrogen evolution
             reaction (HER), oxygen evolution reaction (OER), carbon dioxide reduction reaction (CO 2 RR), and cancer
             treatment. Finally, we described the opportunities, challenges, and development directions of two-
             dimensional nanocatalysts. The purpose of this review is to stimulate and guide interest in this research field, in
             order to promote innovation in the catalytic field of two-dimensional nanomaterials in the future.
                 Key words: 2D nanomaterials; photocatalysis; electrocatalysis; electrochemistry; photoelectrochemistry
                                                                                                       (R-03)




                                               全新轮胎法规将启用
                                       New tire regulations will come into force introduced

                 目前,联合国欧洲经济委员会(UNECE)宣布,将引入一种测量轮胎颗粒物排放的方法,就像对制动系统
             采用的类似方法一样。
                 轮胎由天然橡胶和合成橡胶以及聚合物和其他化学物质组成,轮胎因与路面摩擦而磨损,例如当车辆转弯、
             加速或制动时,将小颗粒释放到空气中并释放到路边和周围环境中。
                 在污染和能源工作组的支持下,噪音和轮胎工作组根据联合国第 117 号条例批准了两种测量轮胎磨损的方法:
             在行驶 8 000 km 的车队的开放道路上进行测试,以及对超过 5 000 km 的磨损滚动滚筒进行实验室测试。
                 由于磨损而造成的轮胎重量损失将以轮胎上每吨负载的毫克 / 公里为单位。这些方法将应用于市场评估工作,
             以收集各种轮胎尺寸、型号和品牌的磨损数据,确定磨损限值,并在 2025 年 9 月之前纳入联合国第 117 号法规,
             用于乘用车轮胎(C1 轮胎)。
                 一旦修订后的法规生效,轮胎制造商将不得不确保所有销售的轮胎都符合这些限制。超过限制的制造商将需
             要调整其材料成分或制造工艺。该提案由法国和欧盟委员会牵头,将作为欧盟欧 7 提案的参考方法。
                 预计该方法将在 2026~2027 年扩展到涵盖配备 C2 和 C3 轮胎的较重车辆,从而有助于显著减少微塑料对环
             境的污染。
                                                                                    编自 “ 中国轮胎商务网 ”
                                                                                                       (R-03)



                                                                                                         4
             ·10·                                                                              第 50 卷  第 期
   53   54   55   56   57   58   59   60   61   62   63