Page 57 - 《橡塑技术与装备》2024年4期
P. 57

综述与专论                                                       张伟 等·二维纳米催化剂的研究进展与展望


                在光催化方面,光激发下半导体催化剂的带隙是一个                               edge sites for electrocatalysis[J]. Journal of Materials
                                                                      Chemistry, 2012, 11(2):963–969.
                主导因素。目前,二维纳米材料和三维块状材料的维
                                                                  [11]  G.  Wang, J.  Tao, Y. Zhang. Engineering two-dimensional
                度对于控制能带隙位置的基本机制和具体影响尚不清                               m a ss- t ra n sp o rt  c h a nn e l s o f  t h e  MoS2  n a n oc a t a l yst
                楚。迄今为止,二维纳米材料的理论催化机制仍不容                               toward improved hydrogen evolution performance[J].
                                                                      Advanced Materials Interfaces, 2018, 32(10):25 409–25 414.
                易适用于真实的复杂反应系统,因此对催化机制的更
                                                                  [12]  S. Zhang, B. Li, X.  Wang. Recent developments of two–
                多理论和基础研究值得探索。
                                                                      dimensional graphene–based composites in visible-light
                    除了用于大规模生产的技术发展外,催化剂成型                             photocatalysis for eliminating  persistent  organic  pollutants
                的能力也受到关注,以满足最终应用的需求。当二维                               from wastewater[J]. Chemical Engineering Science, 2020,
                                                                      39(25):124–132.
                纳米材料以散装粉末的形式使用时,它们可能会团聚,
                                                                  [13]  W.Q. Qian,  W.Y.  Yang,  Y. Zhang. Piezoelectric materials
                限制了它们的应用。将二维纳米材料固定在基底上提                               for controlling electro-chemical processes[J]. Nano-Micro
                供了改善其易用性的有希望的方法。例如,二维纳米                               Letters, 2020, 12(21):149–159.
                                                                  [14]  J. Wu,  Z. Wu, W.  Qian.  Electricfield–treatment-induced
                材料可以外延生长在其他材料的表面上,组装成泡沫
                                                                      enhancement of photoluminescence in Er3+ – doped
                状,或者支持在碳纤维纸或镍泡沫上以提高催化活性。                              (Ba0.95Sr0.05)(Zr0.1Ti0.9)O3 piezoelectric ceramic[J].
                                                                      Letters, 2016, 184(28):131–133.
                                                                  [15]  Y. Zheng, Y. Jiao, Y. Zhu. Molecule level g–C3N4 coordinat
                参考文献 :
                [1]   W.Q.  Qian,  Z. Wu, Y.M.  Jia,  et  al. Thermo-electrochemical   ed transition metals as a new class of electrocatalysts
                    c o u p l i n g  f o r  r o o m  t e m p e r a t u r e  t h e r m o c a t a l y si s i n   for  oxygen electrode reactions[J].  JOURNAL OF  THE
                    pyroelectric ZnO nanorods[J]. Electrochemistry communicat  AMERICAN CHEMICAL SOCIETY, 2017, 139(54):3 336–3
                    ions , 2017, 45(81):124–127.                      339 .
                [2]   Y.T. Xia,  Y.M. Jia,  W.Q. Qian, et al. Pyroelectrically   [16]  T. Su, Q. Shao, Z. Qin. Role of interfaces in two-dimens
                    i nduc ed pyro-e l ec t ro-c .he mi c al  c at a lyti c  a c ti vi t y of   ional photocatalyst for water splitting[J]. ACS Catal, 2018,
                    BaTiO3 nanofibers under room-temperature cold-hot cycle   32(8):2 253–2 276.
                    excitations[J]. Metals-Basel, 2017, 7(122 ):124–131.  [17]  Y.L. Li, P.P. Li, J.S.  Wang.  Water soluble graphitic carbon
                [3]   M.  Gavrilescu,  K.  Demnerova,  J. Aamand,  S.  Emerging   nitride  with  tunable  fluorescence  for  boosting  broad-
                    pollutants in the environment:Present and future challenges   response photocatalysisJ]. Appl. Catal. B-Environ, 2018,
                    in biomonitoring, ecological risks and bioremediation[J].   225(32):519–529.
                    New Biotechnology, 2015, 45(32):147–156.      [18]  W.J. Ong, L.L.  Tan,  Y.H. Ng. Graphitic carbon nitride
                [4]   H. Jin, C. Guo, X. Liu. Emer ging two-dimensional   (g-C 3 N 4 )-based photocatalysts for artificial photosynthesis
                    nanomaterials for electrocatalysis.[J]. Chem. Rev, 2018,   and environmental  remediation:Are we a step closer  to
                    54(118):6 337–6 408.                              achieving sustainability[J]. Chem. Rev, 2016, 116(56):7 159–
                [5]   B. Luo, G. Liu, L.  Wang. Recent advances in 2D materials   7 329.
                    for photocatalysis[J]. Nanoscale, 2016,32(8):6 904–6 920.  [19]  N. Nitta, G.  Yushin. High-capacity anode materials for
                [6]   H.  Wang, X. Liu, P. Niu, et al. Porous two dimensional   lithium-ion batteries:Choice of elements and structures for
                    materials for photocatalytic and electrocatalytic   active particles[J]. Part Part Syst. Char, 2014, 31(21):317–
                    applications[J]. Journal of Materials Chemistry, 2020,   336.
                    45(2):1 377–1 413.                            [20]  G.  Abellan, S.  Wild,  V. Lloret. Fundamental insights
                [7]   D. Qin, Y. Zhou, W. Wang, et al., Recent advances in two-  into the degradation and stabilization of thin layer black
                    dimensional nanomaterials for photocatalytic reduction of   phosphorus[J]. J. Am. Chem. Soc, 2017, 139(32):10 432–10
                    CO 2 :Insights into performance, theories and perspective[J].   440.
                    Journal of Materials Chemistry, 2020,15(8):19 156–19 195.  [21]  O.I. Malyi, K.V. Sopiha, C. Draxl. Stability and electronic
                [8]   K. Khan, A.K.  Tareen, M. Aslam, et al. Recent progress,   properties  of  phosphorene  oxides:From 0-dimensional  to
                    challenges, and prospects in two-dimensional photo-catalyst   amorphous 2-dimensional structures[J]. Nanoscale, 2017,
                    materials and environmental remediation[J]. Nano-Micro   35(9):2 428–2 435 .
                    Letters, 2020, 42(12):167–175.                [22]  D. Hanlon, C. Backes, E. Doherty. Liquid exfoliation
                [9]   C. Tan, X. Cao, X.J. Wu, et al. Recent advances in ultrathin   of  solvent-stabilized  fewlayer  black  phosphorus  for
                    two – dimensional nanomaterial s[J]. Royal Society of   applications beyond electronics[J]. Nat. Commun, 2015,
                    Chemistry Chemical Society Reviews, 2017, 117(12):6 225–  36(12):1 563–1 572.
                    6 331.                                        [23]  Q. Zhang, S. Huang, J. Deng. Ice-assisted synthesis of black
                [10]  J. Kibsgaard, Z. Chen, B.N. Reinecke. Engineering the   phosphorus nanosheets as a metal-free photocatalyst:2D/2D
                    surface structure of MoS 2  to preferentially expose active   heterostructure for broadband H2 evolution[J]. Adv. Funct.



                2024     第   50 卷                                                                       ·9·
                      年
   52   53   54   55   56   57   58   59   60   61   62