Page 57 - 《橡塑技术与装备》2024年4期
P. 57
综述与专论 张伟 等·二维纳米催化剂的研究进展与展望
在光催化方面,光激发下半导体催化剂的带隙是一个 edge sites for electrocatalysis[J]. Journal of Materials
Chemistry, 2012, 11(2):963–969.
主导因素。目前,二维纳米材料和三维块状材料的维
[11] G. Wang, J. Tao, Y. Zhang. Engineering two-dimensional
度对于控制能带隙位置的基本机制和具体影响尚不清 m a ss- t ra n sp o rt c h a nn e l s o f t h e MoS2 n a n oc a t a l yst
楚。迄今为止,二维纳米材料的理论催化机制仍不容 toward improved hydrogen evolution performance[J].
Advanced Materials Interfaces, 2018, 32(10):25 409–25 414.
易适用于真实的复杂反应系统,因此对催化机制的更
[12] S. Zhang, B. Li, X. Wang. Recent developments of two–
多理论和基础研究值得探索。
dimensional graphene–based composites in visible-light
除了用于大规模生产的技术发展外,催化剂成型 photocatalysis for eliminating persistent organic pollutants
的能力也受到关注,以满足最终应用的需求。当二维 from wastewater[J]. Chemical Engineering Science, 2020,
39(25):124–132.
纳米材料以散装粉末的形式使用时,它们可能会团聚,
[13] W.Q. Qian, W.Y. Yang, Y. Zhang. Piezoelectric materials
限制了它们的应用。将二维纳米材料固定在基底上提 for controlling electro-chemical processes[J]. Nano-Micro
供了改善其易用性的有希望的方法。例如,二维纳米 Letters, 2020, 12(21):149–159.
[14] J. Wu, Z. Wu, W. Qian. Electricfield–treatment-induced
材料可以外延生长在其他材料的表面上,组装成泡沫
enhancement of photoluminescence in Er3+ – doped
状,或者支持在碳纤维纸或镍泡沫上以提高催化活性。 (Ba0.95Sr0.05)(Zr0.1Ti0.9)O3 piezoelectric ceramic[J].
Letters, 2016, 184(28):131–133.
[15] Y. Zheng, Y. Jiao, Y. Zhu. Molecule level g–C3N4 coordinat
参考文献 :
[1] W.Q. Qian, Z. Wu, Y.M. Jia, et al. Thermo-electrochemical ed transition metals as a new class of electrocatalysts
c o u p l i n g f o r r o o m t e m p e r a t u r e t h e r m o c a t a l y si s i n for oxygen electrode reactions[J]. JOURNAL OF THE
pyroelectric ZnO nanorods[J]. Electrochemistry communicat AMERICAN CHEMICAL SOCIETY, 2017, 139(54):3 336–3
ions , 2017, 45(81):124–127. 339 .
[2] Y.T. Xia, Y.M. Jia, W.Q. Qian, et al. Pyroelectrically [16] T. Su, Q. Shao, Z. Qin. Role of interfaces in two-dimens
i nduc ed pyro-e l ec t ro-c .he mi c al c at a lyti c a c ti vi t y of ional photocatalyst for water splitting[J]. ACS Catal, 2018,
BaTiO3 nanofibers under room-temperature cold-hot cycle 32(8):2 253–2 276.
excitations[J]. Metals-Basel, 2017, 7(122 ):124–131. [17] Y.L. Li, P.P. Li, J.S. Wang. Water soluble graphitic carbon
[3] M. Gavrilescu, K. Demnerova, J. Aamand, S. Emerging nitride with tunable fluorescence for boosting broad-
pollutants in the environment:Present and future challenges response photocatalysisJ]. Appl. Catal. B-Environ, 2018,
in biomonitoring, ecological risks and bioremediation[J]. 225(32):519–529.
New Biotechnology, 2015, 45(32):147–156. [18] W.J. Ong, L.L. Tan, Y.H. Ng. Graphitic carbon nitride
[4] H. Jin, C. Guo, X. Liu. Emer ging two-dimensional (g-C 3 N 4 )-based photocatalysts for artificial photosynthesis
nanomaterials for electrocatalysis.[J]. Chem. Rev, 2018, and environmental remediation:Are we a step closer to
54(118):6 337–6 408. achieving sustainability[J]. Chem. Rev, 2016, 116(56):7 159–
[5] B. Luo, G. Liu, L. Wang. Recent advances in 2D materials 7 329.
for photocatalysis[J]. Nanoscale, 2016,32(8):6 904–6 920. [19] N. Nitta, G. Yushin. High-capacity anode materials for
[6] H. Wang, X. Liu, P. Niu, et al. Porous two dimensional lithium-ion batteries:Choice of elements and structures for
materials for photocatalytic and electrocatalytic active particles[J]. Part Part Syst. Char, 2014, 31(21):317–
applications[J]. Journal of Materials Chemistry, 2020, 336.
45(2):1 377–1 413. [20] G. Abellan, S. Wild, V. Lloret. Fundamental insights
[7] D. Qin, Y. Zhou, W. Wang, et al., Recent advances in two- into the degradation and stabilization of thin layer black
dimensional nanomaterials for photocatalytic reduction of phosphorus[J]. J. Am. Chem. Soc, 2017, 139(32):10 432–10
CO 2 :Insights into performance, theories and perspective[J]. 440.
Journal of Materials Chemistry, 2020,15(8):19 156–19 195. [21] O.I. Malyi, K.V. Sopiha, C. Draxl. Stability and electronic
[8] K. Khan, A.K. Tareen, M. Aslam, et al. Recent progress, properties of phosphorene oxides:From 0-dimensional to
challenges, and prospects in two-dimensional photo-catalyst amorphous 2-dimensional structures[J]. Nanoscale, 2017,
materials and environmental remediation[J]. Nano-Micro 35(9):2 428–2 435 .
Letters, 2020, 42(12):167–175. [22] D. Hanlon, C. Backes, E. Doherty. Liquid exfoliation
[9] C. Tan, X. Cao, X.J. Wu, et al. Recent advances in ultrathin of solvent-stabilized fewlayer black phosphorus for
two – dimensional nanomaterial s[J]. Royal Society of applications beyond electronics[J]. Nat. Commun, 2015,
Chemistry Chemical Society Reviews, 2017, 117(12):6 225– 36(12):1 563–1 572.
6 331. [23] Q. Zhang, S. Huang, J. Deng. Ice-assisted synthesis of black
[10] J. Kibsgaard, Z. Chen, B.N. Reinecke. Engineering the phosphorus nanosheets as a metal-free photocatalyst:2D/2D
surface structure of MoS 2 to preferentially expose active heterostructure for broadband H2 evolution[J]. Adv. Funct.
2024 第 50 卷 ·9·
年